Recommendation Service

Recommendation engine which provides recommendation based on customer id, item id and the preference of the customer for a particular Item. Recommendations can be fetched based on User Similarity i.e. It finds similarity based on Users and Item Similarity which finds similarity based on Items. The Recommendation Engine currently supports two types of Similarity Algorithms i.e. EuclideanDistanceSimilarity and PearsonCorrelationSimilarity. By default when similarity is not specified PearsonCorrelationSimilarity is used e.g. in the method ItemBased(Double userId, int howMany) it uses PearsonCorrelationSimilarity. In the method ItemBasedBySimilarity(String similarity,Double userId, int howMany) one can specify which similarity algorithm has to be used e.g. Recommender.EUCLIDEAN_DISTANCE or Recommender.PEARSON_CORRELATION. Preference file can be loaded using the method LoadPreferenceFile(String preferenceFilePath) in csv format. This preference file has to be uploaded once which can be a batch process.

The csv format for the file is given below. customerId, itemId, preference e.g. 1,101,5.0: 1,102,3.0: 1,103,2.5: 2,101,2.0: 2,102,2.5: 2,103,5.0: 2,104,2.0: 3,101,2.5: 3,104,4.0: 3,105,4.5: 3,107,5.0: 4,101,5.0: 4,103,3.0: 4,104,4.5: 4,106,4.0: 5,101,4.0: 5,102,3.0: 5,103,2.0: 5,104,4.0: 5,105,3.5: 5,106,4.0:

The Customer Id and Item id can be any alphanumeric character(s) and Preference values can be in any range. If app developers have used the Review Service. The Recommendation Engine can be used in conjunction with Review. In this case a CSV preference file need not be uploaded. The CustomerId, ItemId and Preference will be taken from Review where customerId is mapped with username, ItemId is mapped with itemId and preference with rating. The methods for recommendations based on Reviews are part of the Review service.

Initialize

In order to use various the functions available in a specific API, a developer has to initialize with App42API by passing the apiKey and secretKey which will be created after the app creation from AppHQ dashboard.

Required Parameters

apiKey - The Application key given when the application was created. secretKey - The secret key corresponding to the application key given when the application was created.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
App42API.initialize("ANDROID_APPLICATION_CONTEXT","API_KEY","SECRET_KEY");
App42API.Initialize("API_KEY","SECRET_KEY");
ServiceAPI *api = [[ServiceAPI alloc]init];
api.apiKey = @"API_KEY";
api.secretKey = @"SECRET_KEY"; 
App42API.initialize("API_KEY","SECRET_KEY");
App42API.initialize("API_KEY","SECRET_KEY");
Coming Soon
App42.initialize("API_KEY","SECRET_KEY");
Coming Soon
Coming Soon
App42API.Initialize("API_KEY","SECRET_KEY");
App42API::initialize("API_KEY","SECRET_KEY"); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Build Service

After initialization, developer needs to call the buildXXXService method on App42API to get the instance of the particular API that you wish to build. For example, To build an instance of Recommender Service, buildRecommenderService() method needs to be called.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderService recommenderService = App42API.buildRecommenderService(); 
RecommenderService recommenderService = App42API.BuildRecommenderService();  
RecommenderService *recommenderService = [api buildRecommenderService]; 
RecommenderService recommenderService = App42API.buildRecommenderService(); 
RecommenderService recommenderService = App42API.buildRecommenderService(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
RecommenderService recommenderService = App42API.BuildRecommenderService(); 
$recommenderService = App42API::buildRecommenderService(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Import Statement

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
import com.shephertz.app42.paas.sdk.android.App42API;
import com.shephertz.app42.paas.sdk.android.App42Response;
import com.shephertz.app42.paas.sdk.android.App42Exception;
import com.shephertz.app42.paas.sdk.android.App42BadParameterException;
import com.shephertz.app42.paas.sdk.android.App42NotFoundException;
import com.shephertz.app42.paas.sdk.android.recommend.PreferenceData;
import com.shephertz.app42.paas.sdk.android.recommend.Recommender;
import com.shephertz.app42.paas.sdk.android.recommend.RecommenderService;
import com.shephertz.app42.paas.sdk.android.recommend.RecommenderSimilarity;
using com.shephertz.app42.paas.sdk.windows;  
using com.shephertz.app42.paas.sdk.windows.recommend;   
#import "Shephertz_App42_iOS_API/Shephertz_App42_iOS_API.h"   
import com.shephertz.app42.paas.sdk.jme.App42API;
import com.shephertz.app42.paas.sdk.jme.App42Response;
import com.shephertz.app42.paas.sdk.jme.App42Exception;
import com.shephertz.app42.paas.sdk.jme.App42BadParameterException;
import com.shephertz.app42.paas.sdk.jme.App42NotFoundException;
import com.shephertz.app42.paas.sdk.jme.recommend.PreferenceData;
import com.shephertz.app42.paas.sdk.jme.recommend.Recommender;
import com.shephertz.app42.paas.sdk.jme.recommend.RecommenderService;
import com.shephertz.app42.paas.sdk.jme.recommend.RecommenderSimilarity;
import com.shephertz.app42.paas.sdk.java.App42API;
import com.shephertz.app42.paas.sdk.java.App42Response;
import com.shephertz.app42.paas.sdk.java.App42Exception;
import com.shephertz.app42.paas.sdk.java.App42BadParameterException;
import com.shephertz.app42.paas.sdk.java.App42NotFoundException;
import com.shephertz.app42.paas.sdk.java.recommend.Recommender;
import com.shephertz.app42.paas.sdk.java.recommend.PreferenceData;
import com.shephertz.app42.paas.sdk.java.recommend.RecommenderService;
import com.shephertz.app42.paas.sdk.java.recommend.RecommenderSimilarity;
Not Available
Coming Soon
Coming Soon
using com.shephertz.app42.paas.sdk.csharp;  
using com.shephertz.app42.paas.sdk.csharp.recommend;  
include_once '../RecommenderService.php';  
include_once '../App42Log.php';   
include_once '../App42Response.php';  
include_once '../App42Exception.php';   
include_once '../App42BadParameterException.php';  
include_once '../App42NotFoundException.php';  
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Load Prefrence File

Uploads preference file on the cloud. The preference file should be in CSV format. This preference file has to be uploaded once which can be a batch process. New versions of preference file either can be uploaded in a different name or the older one has to be removed and the uploaded in the same name. The CSV format for the file is given below. customerId, itemId, preference e.g. 1,101,5.0: 1,102,3.0: 1,103,2.5: 2,101,2.0: 2,102,2.5: 2,103,5.0: 2,104,2.0: 3,101,2.5: 3,104,4.0: 3,105,4.5: 3,107,5.0: 4,101,5.0: 4,103,3.0: 4,104,4.5: 4,106,4.0: 5,101,4.0: 5,102,3.0: 5,103,2.0: 5,104,4.0: 5,105,3.5: 5,106,4.0:

The customer Id and item id can be any alphanumeric character(s) and preference values can be in any range. If the recommendations have to be done based on Reviews then this file need not be uploaded.

Required Parameters

filePath - Path of the preference file to be loaded.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
String filePath = "Your File Path";
recommenderService.loadPreferenceFile(filePath,	new App42CallBack() {
public void onSuccess(Object response) 
{
	App42Response app42response = (App42Response)response;      
	System.out.println("response is " + app42response) ;  
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
String filePath = "Your File Path";
recommenderService.LoadPreferenceFile(filePath,new Callback());  
public class Callback : App42Callback  
{  
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object object)  
	{  
		App42Response response = (App42Response) object;     
		String jsonResponse = response.ToString();  
	}  
}  
NSString *filePath = @"Your File Path";
App42Response *response = [recommenderService loadPreferenceFile:filePath]; 
NSString *success = response.isResponseSuccess;
NSString *jsonResponse = [response toString];                             
String filePath = "Your File Path";
App42Response response = recommenderService.loadPreferenceFile(filePath); 
boolean  success = response.isResponseSuccess();
String jsonResponse = response.toString(); 
String filePath = "Your File Path";
App42Response app42response = recommenderService.loadPreferenceFile(filePath);
System.out.println("response is " + app42response) ;  
boolean  success = app42response.isResponseSuccess();
String jsonResponse = app42response.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
String filePath = "Your File Path";
App42Response response = recommenderService.LoadPreferenceFile(filePath); 
Boolean  success = response.IsResponseSuccess();
String jsonResponse = response.ToString(); 
$filePath = "Your File Path";
$response = $recommenderService->loadPreferenceFile($filePath); 
$success = $respons->isResponseSuccess();
$jsonResponse = $respons->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon 

Load Prefrence File With Inputstream

Uploads preference file on the cloud. The preference file should be in CSV format. This preference file has to be uploaded once which can be a batch process. New versions of preference file either can be uploaded in a different name or the older one has to be removed and the uploaded in the same name. The CSV format for the file is given below. customerId, itemId, preference e.g 1,101,5.0: 1,102,3.0: 1,103,2.5: 2,101,2.0: 2,102,2.5: 2,103,5.0: 2,104,2.0: 3,101,2.5: 3,104,4.0: 3,105,4.5: 3,107,5.0: 4,101,5.0: 4,103,3.0: 4,104,4.5: 4,106,4.0: 5,101,4.0: 5,102,3.0: 5,103,2.0: 5,104,4.0: 5,105,3.5: 5,106,4.0: The customer Id and item id can be any alphanumeric character(s) and preference values can be in any range. If the recommendations have to be done based on Reviews then this file need not be uploaded.

Required Parameters

inputStream - Input Stream of the file to load.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
InputStream inputStream = null; /*Get input stream from your source*/
recommenderService.loadPreferenceFile(inputStream,	new App42CallBack() {
public void onSuccess(Object response) 
{
	App42Response app42response = (App42Response)response;      
	System.out.println("response is " + app42response) ;  
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
Stream inputStream = null; /*Get input stream from your source*/
recommenderService.LoadPreferenceFile(inputStream,new Callback());  
public class Callback : App42Callback  
{  
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object object)  
	{  
		App42Response response = (App42Response) object;     
		String jsonResponse = response.ToString();  
	}  
}  
App42Response *response = [recommenderService loadPreferenceFile:@"Get NSData from your source"]; 
NSString *success = response.isResponseSuccess;
NSString *jsonResponse = [response toString];                             
InputStream inputStream = null; /*Get input stream from your source*/
App42Response response = recommenderService.loadPreferenceFile(inputStream); 
boolean  success = response.isResponseSuccess();
String jsonResponse = response.toString(); 
InputStream inputStream = null; /*Get input stream from your source*/
App42Response app42response = recommenderService.loadPreferenceFile(inputStream);
System.out.println("response is " + app42response) ; 
boolean  success = app42response.isResponseSuccess();
String jsonResponse = app42response.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
Stream inputStream = null; /*Get input stream from your source*/
App42Response response = recommenderService.LoadPreferenceFile(inputStream); 
Boolean  success = response.IsResponseSuccess();
String jsonResponse = response.ToString(); 
Not Available
Coming Soon
Coming Soon
Coming Soon 
Coming Soon 

User Based Neighbourhood

User based recommendations based on Neighborhood. Recommendations are found based on similar users in the Neighborhood of the given user. The size of the neighborhood can be found.

Required Parameters

userId - The user Id for whom recommendations have to be found. size - Size of the Neighborhood. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
long userId = 3;
int size = 4567788 ;
int howMany = 2;
recommenderService.userBasedNeighborhood(userId, size, howMany,	new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
long userId = 3;
int size = 4567788 ;
int howMany = 2;
recommenderService.UserBasedNeighborhood(userId, size, howMany,new Callback()); 
public class Callback : App42Callback  
{ 
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}  
}  
long userId = 3;
int size = 4567788 ;
int howMany = 2;
Recommender *recommender =  [recommenderService userBasedNeighborhood:userId size:size howMany:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
                            
long userId = 3;
int size = 4567788 ;
int howMany = 2;
Recommender recommender = recommenderService.userBasedNeighborhood(userId, size, howMany);
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());  
} 
String jsonResponse = recommender.toString(); 
long userId = 3;
int size = 4567788 ;
int howMany = 2;
Recommender recommender = recommenderService.userBasedNeighborhood(userId, size, howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
Int64 userId = 3;
int size = 4567788 ;
int howMany = 2;
Recommender recommender = recommenderService.UserBasedNeighborhood(userId, size, howMany);  
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
$userId = 3;
$size = 4567788 ;
$howMany = 2;
$recommender = $recommenderService->userBasedNeighborhood($userId, $size, $howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Neighbourhood By Similarity

User based recommendations based on Neighborhood and Similarity. Recommendations and found based on the similar users in the Neighborhood with the specified Similarity Algorithm. Algorithm can be specified using the constants Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION.

Required Parameters

recommenderSimilarity - Similarity algorithm e.g. Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION. userId - The user Id for whom recommendations have to be found. size - Size of the Neighborhood. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;		
long userId = 1;
int size = 2;
int howMany = 2;						
recommenderService.userBasedNeighborhoodBySimilarity(recommenderSimilarity, userId, size, howMany, new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
String jsonResponse = recommender.toString();
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;		
long userId = 1;
int size = 2;
int howMany = 2;	
recommenderService.UserBasedNeighborhoodBySimilarity(recommenderSimilarity,userId, size, howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
NSString *recommenderSimilarity = EUCLIDEAN_DISTANCE;		
long userId = 1;
int size = 2;
int howMany = 2;						
Recommender *recommender =  [recommenderService userBasedNeighborhoodBySimilarity:EUCLIDEAN_DISTANCE userId:userId size:size howMany:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;		
long userId = 1;
int size = 2;
int howMany = 2;
Recommender recommender = recommenderService.userBasedNeighborhoodBySimilarity(recommenderSimilarity,userId, size, howMany); 
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
  	System.out.println("value is " + recommendedItem.getValue());   
}
String jsonResponse = recommender.toString(); 
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;		
long userId = 1;
int size = 2;
int howMany = 2;						
Recommender recommender = recommenderService.userBasedNeighborhoodBySimilarity(recommenderSimilarity, userId, size, howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;		
Int64 userId = 1;
int size = 2;
int howMany = 2;
Recommender recommender = recommenderService.UserBasedNeighborhoodBySimilarity(recommenderSimilarity, userId, size, howMany);  
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
    Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
recommenderSimilarity = RecommenderSimilarity::EUCLIDEAN_DISTANCE;		
$userId = 1;
$size = 2;
$howMany = 2;
$recommender = $recommenderService->userBasedNeighborhoodBySimilarity($recommenderSimilarity,$userId, $size, $howMany); 
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString();
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Neighbourhood For All

User based recommendations based on Neighborhood for All Users. Recommendations and found based similar users in the Neighborhood of the given user. The size of the neighborhood can be found.

Required Parameters

size - Size of the Neighborhood. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
int size = 1;
int howMany = 1;						
recommenderService.userBasedNeighborhoodForAll(size, howMany,	new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
int size = 1;
int howMany = 1;
recommenderService.UserBasedNeighborhoodForAll(size, howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
int size = 1;
int howMany = 1;						
Recommender *recommender =  [recommenderService userBasedNeighborhoodForAll:size howMany:howMany]
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
int size = 1;
int howMany = 1;		
Recommender recommender = recommenderService.userBasedNeighborhoodForAll(size, howMany);  
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("userId is " + recommendedItem.getUserId());
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());
}
String jsonResponse = recommender.toString();  
int size = 1;
int howMany = 1;						
Recommender recommender = recommenderService.userBasedNeighborhoodForAll(size, howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
int size = 1;
int howMany = 1;		
Recommender recommender = recommenderService.UserBasedNeighborhoodForAll(size, howMany);  
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("userId is " + recommendedItemList[0].GetUserId());
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
$size = 1;
$howMany = 1;
$recommender = $recommenderService->userBasedNeighborhoodForAll($size, $howMany);  
$success = $recommender->isResponseSuccess();  
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Neighbourhood By Similarity For All

User based recommendations based on Neighborhood and Similarity for all Users. Recommendations and found based similar users in the Neighborhood with the specified Similarity Algorithm. Algorithm can be specified using the constants Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION

Required Parameters recommenderSimilarity - Similarity algorithm e.g. Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION. size - Size of the Neighborhood. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int size = 2;
int howMany = 3;						
recommenderService.userBasedNeighborhoodBySimilarityForAll(recommenderSimilarity, size, howMany, new App42CallBack() {
public void onSuccess(Object response)
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int size = 2;
int howMany = 3;
recommenderService.UserBasedNeighborhoodBySimilarityForAll(recommenderSimilarity, size, howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
NSString *recommenderSimilarity = EUCLIDEAN_DISTANCE;
int size = 2;
int howMany = 3;						
Recommender *recommender =  [recommenderService userBasedNeighborhoodBySimilarityForAll:EUCLIDEAN_DISTANCE size:size howMany:howMany] 
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"userId is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int size = 2;
int howMany = 3;						
Recommender recommender = recommenderService.userBasedNeighborhoodBySimilarityForAll(recommenderSimilarity,size, howMany);
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("userId is " + recommendedItem.getUserId());
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());
}
String jsonResponse = recommender.toString();
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int size = 2;
int howMany = 3;						
Recommender recommender = recommenderService.userBasedNeighborhoodBySimilarityForAll(recommenderSimilarity, size, howMany); 
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int size = 2;
int howMany = 3;		
Recommender recommender = recommenderService.UserBasedNeighborhoodBySimilarityForAll(recommenderSimilarity, size, howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("userId is " + recommendedItemList[0].GetUserId());
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString();
$recommenderSimilarity = RecommenderSimilarity::EUCLIDEAN_DISTANCE;
$size = 2;
$howMany = 3;		
$recommender = $recommenderService->userBasedNeighborhoodBySimilarityForAll($recommenderSimilarity,$size, $howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Threshold

User based neighborhood recommendations based on Threshold. Recommendations are found based on Threshold where threshold represents similarity threshold where user are at least that similar. Threshold values can vary from -1 to 1.

Required Parameters

userId - The user Id for whom recommendations have to be found. threshold - Threshold size. Values can vary from -1 to 1. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
long userId = 1;
double threshold = 0.5;
int howMany = 2;					
recommenderService.userBasedThreshold(userId,threshold, howMany,	new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
long userId = 1;
double threshold = 0.5;
int howMany = 2;	
recommenderService.UserBasedThreshold(userId, threshold, howMany,new Callback());
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
long userId = 3;
int size = 4567788 ;
int howMany = 2;
Recommender *recommender =  [recommenderService userBasedNeighborhood:userId size:size howMany:howMany]; 
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
long userId = 1;
double threshold = 0.5;
int howMany = 2;		
Recommender recommender = recommenderService.userBasedThreshold(userId, threshold, howMany);  
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
    System.out.println("value is " + recommendedItem.getValue());     
}
String jsonResponse = recommender.toString();
long userId = 1;
double threshold = 0.5;
int howMany = 2;					
Recommender recommender = recommenderService.userBasedThreshold(userId, threshold, howMany); 
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
Int64 userId = 1;
Double threshold = 0.5;
int howMany = 2;	
Recommender recommender = recommenderService.UserBasedThreshold(userId, threshold, howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
$userId = 1;
$threshold = 0.5;
$howMany = 2;
$recommender = $recommenderService-> userBasedThreshold($userId, $threshold, $howMany);  
$recommendedItemList =  $recommender-> getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Threshold For All

User based neighborhood recommendations based on Threshold for all Users. Recommendations are found based on Threshold where threshold represents similarity threshold where user are at least that similar. Threshold values can vary from -1 to 1.

Required Parameters

threshold - Threshold size. Values can vary from -1 to 1. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
double threshold = 1;
int howMany = 3;
recommenderService.userBasedThresholdForAll(threshold, howMany,	new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
double threshold = 1;
int howMany = 3;
recommenderService.UserBasedThresholdForAll(threshold, howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
double threshold = 1;
int howMany = 3;
Recommender *recommender =  [recommenderService userBasedThresholdForAll:threshold howMany:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"userId is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];               
double threshold = 1;
int howMany = 3;
Recommender recommender = recommenderService.userBasedThresholdForAll(threshold, howMany);
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("userId is " + recommendedItem.getUserId());
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());
}
String jsonResponse = recommender.toString(); 
double threshold = 1;
int howMany = 3;
Recommender recommender = recommenderService.userBasedThresholdForAll(threshold, howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
 
Double threshold = 1;
int howMany = 3;
Recommender recommender = recommenderService.UserBasedThresholdForAll(threshold, howMany);  
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("userId is " + recommendedItemList[0].GetUserId());
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
$threshold = 1;
$howMany = 3;
$recommender = $recommenderService->userBasedThresholdForAll($threshold, $howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
$success = $recommender->isResponseSuccess();
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Threshold By Similarity

User based neighborhood recommendations based on Threshold. Recommendations are found based on Threshold where threshold represents similarity threshold where user are at least that similar. Threshold values can vary from -1 to 1.

Required Parameters

recommenderSimilarity - Similarity algorithm e.g. Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION. userId - The user Id for whom recommendations have to be found. threshold - Threshold size. Values can vary from -1 to 1. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
double threshold = 0.5;
int howMany = 1;
recommenderService.userBasedThresholdBySimilarity(recommenderSimilarity, userId, threshold, howMany, new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;		
long userId = 1;
int size = 2;
int howMany = 2;	
recommenderService.UserBasedNeighborhoodBySimilarity(recommenderSimilarity,userId, size, howMany,new Callback());
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
RecommenderSimilarity recommenderSimilarity = EUCLIDEAN_DISTANCE;
long userId = 1;
double threshold = 0.5;
int howMany = 1;

Recommender *recommender =  [recommenderService userBasedThresholdBySimilarity:EUCLIDEAN_DISTANCE userId:userId threshold:threshold howMany:howMany]; 
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
 String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
double threshold = 0.5;
int howMany = 1;
Recommender recommender = recommenderService.userBasedThresholdBySimilarity(recommenderSimilarity,userId, threshold, howMany); 
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
  	System.out.println("value is " + recommendedItem.getValue());   
}
String jsonResponse = recommender.toString(); 
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
double threshold = 0.5;
int howMany = 1;
Recommender recommender = recommenderService.userBasedThresholdBySimilarity(recommenderSimilarity, userId, threshold, howMany); 
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
 String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
Int64 userId = 1;
Double threshold = 0.5;
int howMany = 1;
Recommender recommender = recommenderService.UserBasedThresholdBySimilarity(recommenderSimilarity, userId, threshold, howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
  	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString();
recommenderSimilarity = RecommenderSimilarity::EUCLIDEAN_DISTANCE;
$userId = 1;
$threshold = 0.5;
$howMany = 1;					
$recommender = $recommenderService->userBasedThresholdBySimilarity($recommenderSimilarity,$userId, $threshold, $howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString();
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

User Based Threshold By Similarity For All

User based neighborhood recommendations based on Threshold for All. Recommendations are found based on Threshold where threshold represents similarity threshold where user are at least that similar. Threshold values can vary from -1 to 1.

Required Parameters

recommenderSimilarity - Similarity algorithm e.g. Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION. threshold - Threshold size. Values can vary from -1 to 1. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
double threshold = 0.5;
int howMany = 4;
recommenderService.userBasedThresholdBySimilarityForAll(recommenderSimilarity, threshold, howMany, new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
}); 
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
double threshold = 0.5;
int howMany = 4;
recommenderService.UserBasedThresholdBySimilarityForAll(recommenderSimilarity, threshold, howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}     
NSString *recommenderSimilarity = EUCLIDEAN_DISTANCE;
double threshold = 0.5;
int howMany = 4;
Recommender *recommender =  [recommenderService userBasedThresholdBySimilarityForAll:EUCLIDEAN_DISTANCE threshold:threshold howMany:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"userId is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
double threshold = 0.5;
int howMany = 4;
Recommender recommender = recommenderService.userBasedThresholdBySimilarityForAll(recommenderSimilarity, preferenceFileName, threshold, howMany);  
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("userId is " + recommendedItem.getUserId());
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());
}
String jsonResponse = recommender.toString(); 
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
double threshold = 0.5;
int howMany = 4;
Recommender recommender = recommenderService.userBasedThresholdBySimilarityForAll(recommenderSimilarity, threshold, howMany); 
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}	
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
 String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
Double threshold = 0.5;
int howMany = 4;
Recommender recommender = recommenderService.UserBasedThresholdBySimilarityForAll(recommenderSimilarity, threshold, howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("userId is " + recommendedItemList[0].GetUserId());
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
$recommenderSimilarity = RecommenderSimilarity::EUCLIDEAN_DISTANCE;
$threshold = 0.5;
$howMany = 4;
$recommender = $recommenderService->userBasedThresholdBySimilarityForAll($recommenderSimilarity,$threshold, $howMany); 
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print("userId is" . $recommendedItem->getUserId());
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Item Based

Item based recommendations. Recommendations and found based item similarity of the given user. The size of the neighborhood can be found.

Required Parameters

userId - The user Id for whom recommendations have to be found. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
long userId = 1;
int howMany = 1;
recommenderService.itemBased(userId, howMany, new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
}); 
long userId = 1;
int howMany = 1;
recommenderService.ItemBased(preferenceFileName, userId, howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}             
long userId = 1;
int howMany = 1;
Recommender *recommender =  [recommenderService itemBased:preferenceFileName userId:userId howMany:howMany]; 
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
long userId = 1;
int howMany = 1;
Recommender recommender = recommenderService.itemBased(userId, howMany); 
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());     
}
String jsonResponse = recommender.toString();
long userId = 1;
int howMany = 1;
Recommender recommender = recommenderService.itemBased(userId, howMany); 
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
Int64 userId = 1;
int howMany = 1;
Recommender recommender = recommenderService.ItemBased(userId, howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString();  
$userId = 1;
$howMany = 1;
$recommender = $recommenderService->itemBased($userId, $howMany); 
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Item Based For All

Item based recommendations for all Users. Recommendations and found based item similarity of the given user. The size of the neighborhood can be found.

Required Parameters

howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
int howMany = 3;					
recommenderService.itemBasedForAll(howMany,	new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
}); 
public class Callback : App42Callback  
{
int howMany = 3;
recommenderService.ItemBasedForAll(howMany,this);  
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}                  
int howMany = 3;					
Recommender *recommender =  [recommenderService itemBasedForAll:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"userId is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
int howMany = 3;			
Recommender recommender = recommenderService.itemBasedForAll(howMany);
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("userId is " + recommendedItem.getUserId());
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());
}
String jsonResponse = recommender.toString();
int howMany = 3;					
Recommender recommender = recommenderService.itemBasedForAll(howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
 int howMany = 3;					
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int howMany = 5;
Recommender recommender = recommenderService.ItemBasedForAll(howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("userId is " + recommendedItemList[0].GetUserId());
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
} 
String jsonResponse = recommender.ToString(); 
$howMany = 3;
$recommender = $recommenderService->itemBasedForAll($howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print("userId is" . $recommendedItem->getUserId());
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Item Based By Similarity

Item based recommendations. Recommendations and found based one item similarity. Similarity algorithm can be specified of the given user. The size of the neighborhood can be found.

Required Parameters

recommenderSimilarity - Similarity algorithm e.g. Recommender.EUCLIDEAN_DISTANCE and Recommender.PEARSON_CORRELATION. userId - The user Id for whom recommendations have to be found. howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
int howMany = 1;
recommenderService.itemBasedBySimilarity(recommenderSimilarity, userId, howMany, new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
int howMany = 1;
recommenderService.ItemBasedBySimilarity(recommenderSimilarity, userId, howMany,new Callback());  
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}   
}  
NSString *recommenderSimilarity = EUCLIDEAN_DISTANCE;
long userId = 1;
int howMany = 1;
Recommender *recommender =  [recommenderService itemBased:userId howMany:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
int howMany = 1;
Recommender recommender = recommenderService.itemBasedBySimilarity(recommenderSimilarity, userId, howMany); 
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());  
}
String jsonResponse = recommender.toString(); 
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
long userId = 1;
int howMany = 1;
Recommender recommender = recommenderService.itemBasedBySimilarity(recommenderSimilarity, userId, howMany); 
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
Int64 userId = 1;
int howMany = 1;
Recommender recommender = recommenderService.ItemBasedBySimilarity(recommenderSimilarity, userId, howMany); 
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString();
recommenderSimilarity = RecommenderSimilarity::EUCLIDEAN_DISTANCE;
$userId = 1;
$howMany = 1;
$recommender = $recommenderService->itemBasedBySimilarity($recommenderSimilarity,$userId, $howMany); 
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString();                             
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Item Based By Similarity For All

Item based recommendations for all Users. Recommendations and found based item similarity of the given user. The size of the neighborhood can be found.

Required Parameters

howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int howMany = 5;
recommenderService.itemBasedBySimilarityForAll(recommenderSimilarity, howMany,	new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("userId is " + recommendedItemList.get(i).getUserId());
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
}); 
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int howMany = 5;
recommenderService.ItemBasedBySimilarityForAll(recommenderSimilarity,howMany,new Callback()); 
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	} 
	public void OnSuccess(Object obj)
	{
		Recommender recommender = (Recommender) obj;
		IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
			for(int i = 0; i < recommendedItemList.Count; i++)
			{
				Console.WriteLine("user Id is " + recommendedItemList[i].GetUserId());
				Console.WriteLine("item is " + recommendedItemList[i].GetItem());
				Console.WriteLine("value is " + recommendedItemList[i].GetValue());
			}
		String jsonResponse = recommendedItemList.ToString();
	}
}	
   
NSString *recommenderSimilarity = EUCLIDEAN_DISTANCE;
long userId = 1;
int howMany = 1;
Recommender *recommender =  [recommenderService itemBased:userId howMany:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.item);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
 
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int howMany = 5;
Recommender recommender = recommenderService.itemBasedBySimilarityForAll(recommenderSimilarity,howMany); 
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("userId is " + recommendedItem.getUserId());
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());    
}
String jsonResponse = recommender.toString(); 
 RecommenderSimilarity recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int howMany = 5;
Recommender recommender = recommenderService.itemBasedBySimilarityForAll(recommenderSimilarity, howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("userId is " + recommendedItemList.get(i).getUserId());
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
String recommenderSimilarity = RecommenderSimilarity.EUCLIDEAN_DISTANCE;
int howMany = 5;
Recommender recommender = recommenderService.ItemBasedBySimilarityForAll(recommenderSimilarity, howMany);  
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("userId is " + recommendedItemList[0].GetUserId());
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString();
$recommenderSimilarity = RecommenderSimilarity::EUCLIDEAN_DISTANCE;
$howMany = 5;
$recommender = $recommenderService->itemBasedBySimilarityForAll($recommenderSimilarity,$howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print("userId is" . $recommendedItem->getUserId());
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Slope One For All

Recommendations based on SlopeOne Algorithm for all Users.

Required Parameters

howMany - Specifies that how many recommendations have to be found.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
int howMany = 3;
recommenderService.slopeOneForAll(howMany, new App42CallBack() {
public void onSuccess(Object response) 
{
	Recommender  recommender  = (Recommender )response;
	ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
	for(int i=0;i<recommendedItemList.size();i++)
	{
		System.out.println("item is " + recommendedItemList.get(i).getItem());
		System.out.println("value is " + recommendedItemList.get(i).getValue());
	}
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
}); 
int howMany = 3;
recommenderService.SlopeOneForAll(howMany,new Callback()); 
public class Callback : App42Callback  
{ 
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object response)  
	{  
		Recommender recommender = (Recommender) response;     
		String jsonResponse = recommender.ToString();  
	}  
}  
int howMany = 3;
Recommender *recommender =  [recommenderService slopeOneForAll:howMany];
NSMutableArray *recommendedItemList =  recommender.recommendedItemList; 
for(RecommendedItem *recommendedItem in recommendedItemList){
	NSLog(@"item is = %@",recommendedItem.userId);
	NSLog(@"value is = %f",recommendedItem.value);
}
NSString *jsonResponse = [recommender toString];
                            
int howMany = 3;
Recommender recommender = recommenderService.slopeOneForAll(howMany);
Vector recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i< recommendedItemList.size();i++)
{  
	Recommender.RecommendedItem recommendedItem = (Recommender.RecommendedItem) recommendedItemList.elementAt(i);  
	System.out.println("item is " + recommendedItem.getItem());
	System.out.println("value is " + recommendedItem.getValue());  
} 
String jsonResponse = recommender.toString(); 
int howMany = 3;
Recommender recommender = recommenderService.slopeOneForAll(howMany);  
ArrayList<Recommender.RecommendedItem> recommendedItemList =  recommender.getRecommendedItemList(); 
for(int i=0;i<recommendedItemList.size();i++)
{
	System.out.println("item is " + recommendedItemList.get(i).getItem());
	System.out.println("value is " + recommendedItemList.get(i).getValue());
}
String jsonResponse = recommender.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
int howMany = 3;
Recommender recommender = recommenderService.SlopeOneForAll(howMany);  
IList<Recommender.RecommendedItem> recommendedItemList =  recommender.GetRecommendedItemList(); 
for(int i = 0; i < recommendedItemList.Count; i++)
{
	Console.WriteLine("item is " + recommendedItemList[0].GetItem());
	Console.WriteLine("value is " + recommendedItemList[0].GetValue());
}
String jsonResponse = recommender.ToString(); 
$howMany = 3;
$recommender = $recommenderService->slopeOneForAll($howMany);  
$recommendedItemList =  $recommender->getRecommendedItemList(); 
foreach( $recommendedItemList as $recommendedItem ){
print_r("value is" . $recommendedItem->getValue());
print_r("item is" . $recommendedItem->getItem());
}
$jsonResponse = $recommender->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon

Delete All Prefrences

Delete existing preference file.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
recommenderService.deleteAllPreferences(new App42CallBack() {
public void onSuccess(Object response) 
{
	App42Response app42response = (App42Response)response;      
	System.out.println("response is " + app42response) ;  
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
recommenderService.DeleteAllPreferences(new Callback());  
public class Callback : App42Callback  
{  
	public void OnException(App42Exception exception)  
	{  
		Console.WriteLine("Exception Message : " + exception);  
	}  
	public void OnSuccess(Object object)  
	{  
		App42Response response = (App42Response) object;     
		String jsonResponse = response.ToString();  
	}  
}  
App42Response *response = [recommenderService deleteAllPreferences]; 
NSString *success = response.isResponseSuccess;
NSString *jsonResponse = [response toString];                             
App42Response response = recommenderService.deleteAllPreferences(); 
boolean  success = response.isResponseSuccess();
String jsonResponse = response.toString(); 
App42Response app42response = recommenderService.deleteAllPreferences(); 
System.out.println("response is " + app42response) ; 
boolean  success = app42response.isResponseSuccess();
String jsonResponse = app42response.toString(); 
Coming Soon
Not Available
Coming Soon
Coming Soon
App42Response response = recommenderService.DeleteAllPreferences(); 
Boolean  success = response.IsResponseSuccess();
String jsonResponse = response.ToString(); 
$response = $recommenderService->deleteAllPreferences(); 
$success = $respons->isResponseSuccess();
$jsonResponse = $respons->toString(); 
Coming Soon
Coming Soon
Coming Soon 
Coming Soon 

Add Or Update Prefrence

Add or Update preference list on the cloud.

Required Parameters

preferenceDataList - List of Preference Data, which contains customerId, itemId, preference.

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
ArrayList<PreferenceData> preferenceDataList = new ArrayList<PreferenceData>();
PreferenceData preferenceData = new PreferenceData();
preferenceData.setItemId("1");
preferenceData.setPreference("0.5");
preferenceData.setUserId("1");
preferenceDataList.add(preferenceData);
recommenderService.addOrUpdatePreference(preferenceDataList, new App42CallBack() {
public void onSuccess(Object response) 
{
	App42Response app42response = (App42Response)response;      
	System.out.println("response is " + app42response) ;  
}
public void onException(Exception ex) 
{
	System.out.println("Exception Message"+ex.getMessage());
}
});
Coming Soon 
PreferenceData *preferenceData = [[PreferenceData alloc]init];
preferenceData.userId = @"101";
preferenceData.itemId = @"1";
preferenceData.preference = @"0.5";
NSMutableArray *mutableArray = [[NSMutableArray alloc]init];
[mutableArray addObject:preferenceData];
App42Response *app42Response = [recommenderService addOrUpdatePreference:mutableArray];
NSString *success = app42Response.isResponseSuccess;
NSString *jsonResponse = [app42Response toString];                             
Coming Soon
ArrayList<PreferenceData> preferenceDataList = new ArrayList<PreferenceData>();
PreferenceData preferenceData = new PreferenceData();
preferenceData.setItemId("1");
preferenceData.setPreference("0.5");
preferenceData.setUserId("1");
preferenceDataList.add(preferenceData);
App42Response app42response = recommenderService.addOrUpdatePreference(preferenceDataList);
System.out.println("response is :" + app42response);
Coming Soon
Not Available
Coming Soon
Coming Soon
Coming Soon 
Coming Soon
Coming Soon
Coming Soon
App42Log.setDebug(true);
var preferenceDataList:Array = new Array();
var preferenceData:PreferenceData = new PreferenceData();
preferenceData.setItemId("1");
preferenceData.setPreference("0.5");
preferenceData.setUserId("1");
preferenceDataList.push(preferenceData);
recommenderService.addOrUpdatePreference(preferenceDataList,new callback());
class callback implements App42CallBack
{	
	public function onException(exception:App42Exception):void
	{
		trace("Exception Message " + exception);
	}
	public function onSuccess(response:Object):void
	{					
		var app42response :App42Response= App42Response(response);      
		trace("response is " + app42response)   	
	}
} 
Coming Soon 

Exception Handling

The functions available under Recommendation API can throw some exceptions in abnormal conditions. Example of the same has been given below. E.g. If App developer is uploading the Preference File which does not have any data, the loadPreferenceFile function will throw the App42Exception (as shown below) with message as “Bad Request” and the appErrorCode as “2805” and the details as “Preference Data is not valid.”

  • create User Api for Android
  • create User Api for Windows
  • create User Api for iOS
  • create User Api for J2ME
  • create User Api for Java
  • create User Api for Unity
  • create User Api for JS
  • create User Api for Corona
  • create User Api for Cocos2DX
  • create User Api for .Net
  • create User Api for PHP
  • create User Api for Marmalade
  •  create User Api for Ruby
  •  create User Api for Flash
recommenderService.loadPreferenceFile("Your File Path",	new App42CallBack() {
public void onSuccess(Object response) 
{
	App42Response app42response = (App42Response)response;      
	System.out.println("response is " + app42response) ;  
}
public void onException(Exception ex) 
{
	App42Exception exception = (App42Exception)ex;
	int appErrorCode = exception.getAppErrorCode();
	int httpErrorCode = exception.getHttpErrorCode();
	if(appErrorCode == 2805)
	{
	// Handle here for Bad Request (Preference Data is not valid.)
	}
	else if(appErrorCode == 1401)
	{
	// handle here for Client is not authorized
	}
	else if(appErrorCode == 1500)
	{
	// handle here for Internal Server Error
	}
	String jsonText = ex.getMessage(); /* returns the Exception text in JSON format. (as shown below)*/	
}
});	                           
recommenderService.loadPreferenceFile("Your File Path",new Callback());
public class Callback : App42Callback  
{
	public void OnException(App42Exception exception)  
	{  
		int appErrorCode = exception.GetAppErrorCode();
		int httpErrorCode = exception.GetHttpErrorCode();
		if(appErrorCode == 2805)
		{
			// Handle here for Bad Request (Preference Data is not valid.)
		}
		else if(appErrorCode == 1401)
		{
			// handle here for Client is not authorized
		}
		else if(appErrorCode == 1500)
		{
			// handle here for Internal Server Error
		}
	String jsonText = exception.GetMessage();  
	}  
	public void OnSuccess(Object object)  
	{  
		App42Response response = (App42Response) object;
		String jsonResponse = response.ToString();  
	}  
}  
	
@try
{
	App42Response *response = [recommenderService loadPreferenceFile:@"Your File Path"];
} @catch(App42Exception *exception) {
	int appErrorCode = exception.appErrorCode;
	int httpErrorCode = exception.httpErrorCode;
	if(appErrorCode == 2805)
	{
		// Handle here for Bad Request (Preference Data is not valid.)
	}
	else if(appErrorCode == 1401)
	{
		// handle here for Client is not authorized
	}
	else if(appErrorCode == 1500)
	{
		// handle here for Internal Server Error
	}
	NSString *jsonText = exception.reason; 	
}                        
try
{
	App42Response response = recommenderService.loadPreferenceFile("Your File Path");
}
catch(App42Exception ex) 
{
	int appErrorCode = ex.getAppErrorCode();
	int httpErrorCode = ex.getHttpErrorCode();
	if(appErrorCode == 2805)
	{
		// Handle here for Bad Request (Preference Data is not valid.)
	}
	else if(appErrorCode == 1401)
	{
		// handle here for Client is not authorized
	}
	else if(appErrorCode == 1500)
	{
		// handle here for Internal Server Error
	}
	String jsonText = ex.getMessage(); /* returns the Exception text in JSON format. (as shown below)*/	
}                          
try
{
	App42Response response = recommenderService.loadPreferenceFile("Your File Path");
}
catch(App42Exception ex) 
{
	int appErrorCode = ex.getAppErrorCode();
	int httpErrorCode = ex.getHttpErrorCode();
	if(appErrorCode == 2805)
	{
		// Handle here for Bad Request (Preference Data is not valid.)
	}
	else if(appErrorCode == 1401)
	{
		// handle here for Client is not authorized
	}
	else if(appErrorCode == 1500)
	{
		// handle here for Internal Server Error
	}
	String jsonText = ex.getMessage(); /* returns the Exception text in JSON format. (as shown below)*/	
}                          
Coming Soon
Not Available
Coming Soon
Coming Soon
try
{
	App42Response response = recommenderService.LoadPreferenceFile("Your File Path");
}
catch(App42Exception ex) 
{
	int appErrorCode = ex.GetAppErrorCode();
	int httpErrorCode = ex.GetHttpErrorCode();
	if(appErrorCode == 2805)
	{
		// Handle here for Bad Request (Preference Data is not valid.)
	}
	else if(appErrorCode == 1401)
	{
		// handle here for Client is not authorized
	}
	else if(appErrorCode == 1500)
	{
		// handle here for Internal Server Error
	}
	String jsonText = ex.GetMessage(); /* returns the Exception text in JSON format. (as shown below)*/	
}                              
try
{
	$response = $recommenderService->loadPreferenceFile("Your File Path")
} 
catch(App42Exception $exception) 
{
	$appErrorCode =$exception->getAppErrorCode();
	$httpErrorCode = $exception->getHttpErrorCode();
	if($appErrorCode == 2805)
	{
		// Handle here for Bad Request (Preference Data is not valid.)
	}
	else if($appErrorCode == 1401)
	{
		// handle here for Client is not authorized
	}
	else if($appErrorCode == 1500)
	{
		// handle here for Internal Server Error
	}
	$jsonText = $exception->getMessage(); 	
}
Coming Soon
    Coming Soon
Coming Soon 
    Coming Soon

Error Codes

Functions in User API might throw exceptions with following HTTP and Application Error Codes (along with their descriptions):

1400 - BAD REQUEST - The Request parameters are invalid 1401 - UNAUTHORIZED - Client is not authorized 1500 - INTERNAL SERVER ERROR - Internal Server Error. Please try again. 2800 - NOT FOUND - Preferences does not exist. 2801 - NOT FOUND - There are no recommendations for optimize values for 'size' and 'howMany'. 2802 - BAD REQUEST - InvalidArgumentException: '@e.getMessage()'. 2803 - NOT FOUND - There are no recommendations for optimize values for 'threshold' and 'howMany'. 2804 - BAD REQUEST - InvalidArgumentException: NoSuchUserException : UserId '@e.getMessage()'. 2805 - BAD REQUEST - Preference Data is not valid.